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Pairs of atomic scale terraces on a single crystal metal surface can be made to merge controllably under
suitable conditions to yield steps of double height and width. We study the effect of various physical param-
eters on the formation of defects in a kinetic model of step doubling. We treat this manifestly nonequilibrium
problem by mapping the model onto a 1D random sequential adsorption problem and solving this analytically.
We also do simulations to check the validity of our treatment. We find that our treatment effectively captures
the dynamic evolution and the final state of the surface morphology. We show that the number and nature of
the defects formed is controlled by a single dimensionless parameterq. For q close to one we show that the
fraction of defects rises linearly withe;1−q as 0.284e. We also show that one can arrive at the final state
faster and with fewer defects by changing the parameter with time.
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I. INTRODUCTION

Structural phase transitions on stepped metals have gained
much attention in recent years. Starting from some of the
first experiments by Lang, Joyner, and Somorjai[1] who
noticed single-height steps merging to form double-height
steps on Pth544j to time-lapsed scanning tunnelling micro-
scope (STM) measurements of the dynamics of the step-
doubling process more recently[2,3] the field has been at-
tracting more attention. The study of surface structure and, in
particular, the formation of defects during the step-doubling
process is important as these influence the desirable techno-
logical properties of the surfaces. Various experimental[2–5]
studies have been performed to elucidate the dynamics of the
evolution of these step-doubling processes. There has also
been a lot of theoretical effort aimed at understanding
stepped surfaces. Different issues that have been addressed
include the role of thermal kink energies and step-step inter-
actions in determining the equilibrium morphology of vicinal
surfaces[6–9], step dynamics incorporating step-step inter-
actions [10–14], Schwoebel barriers and diffusion[15] as
well as mechanisms for step bunching[16–19]. Research has
also focused on the role of step energy, step-step interactions,
and step curvature on the dynamical process of step doubling
[20–23]. However, there is a further aspect of step doubling
that can be addressed independently of the atomic-scale in-
teractions. This is the persistence of disorder after the dou-
bling process is complete. We show that we can quantify the
limits of disorder by considering only the kinetics of the
problem, without referring to the underlying microscopic
mechanisms. The generality of our approach allows for
wider applicability since one expects analogous limits for a
wide class of surface restructuring problems.

An important characteristic of the step-doubling process
is that, under the optimal conditions, it is manifestly non-
equilibrium. Steps seem to double irreversibly(unless condi-
tions are changed) and hence equilibrium statistical mechan-
ics treatments are suspect. The problem is thus a part of a
whole set of interesting problems. These include nonequilib-
rium epitaxial growth models, many of which are described

by the Kardar–Parisi–Zhang equation[24]. Irreversible de-
positon of macromolecules on surfaces and sociological epi-
demic models[25] also fall into this category. Our approach
to treating the step-doubling process is derived from treat-
ments of random sequential adsorption(RSA) problems[26],
which deal with irreversible adsorption of objects onto
lattices.

In this paper we consider a simple model[27] for the
step-doubling process described by two parameters, a nucle-
ation rate, and a zippering rate. We first map this problem
onto a 1D random sequential adsorption problem with two
kinds of species adsorbing onto the lattice corresponding to
perfectly doubled steps and defective structures. We then uti-
lize the methods of RSA to solve the problem analytically.
We are able to make predictions for the fraction of defects
and perfectly doubled steps in the asymptotic stages of the
process. We also predict the dynamical evolution of the de-
gree to which the surface has undergone doubling. The the-
oretical predictions are then checked against extensive simu-
lation results and found to be in good agreement. We finally
make contact with experimental results and show how our
analysis can be used to extract information about the dynam-
ics of the process.

The paper is organized as follows. We first introduce our
model for the step-doubling process, which utilizes a coarse-
grained picture of the surface. We then solve the problem in
the special limit where the zippering rate is infinite by map-
ping it exactly to the problem of RSA of dimers on a 1D
lattice. We then step back and set up the general mathemati-
cal framework for RSA of more than one species. We then
use this framework to tackle the problem of accounting for
defects. We then generalize this to the case where our field of
view does not encompass the whole sample but just a part of
it, since this is closer to the experimental situation. We then
discuss the time dependence of the surface morphology. Next
we present our simulation methods, and we finally conclude
by discussing our results.

II. THEORETICAL ANALYSIS

It is found that steps commence coalescing at a point con-
tact where a step edge bulge touches the neighboring step
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edge below it[2,3] (see Fig. 1). This is called a nucleation
event. Once a nucleus has been formed the two steps begin
coalescing steadily in both directions from the nucleus. This
process is referred to as zippering. Thus there are two dis-
tinct rates that govern the formation of the doubled structure:

the nucleation rateI (defined as the number of nucleations
that occur per unit time on a sample that has no doubled
steps) and the zippering rateZ (defined as the rate of change
of the length of a doubled step in units of the step width).
This zippering rate is observed to be large enough that many
steps undergo complete doubling. Our analysis will focus on
this regime of smallI /Z.

When the step-doubling process has reached its final state,
two main kinds of defects are observed to remain. The first
kind are isolated step edges whose neighbors to both the
right and left have doubled with their other neighbors leaving
the step “isolated”(see Fig. 1). The second kind are frus-
trated dead ends, which are formed when a step merges to its
left at one point along the step and to its right at another
point. We wish to understand how the nucleation and zipper-
ing rates affect the formation of these defects.

A. Final state

The simplest model assumes that nucleation points occur
randomlyover the entire sample with a probability per unit
time determined byI. The steps then coalesce at a steady rate
sZd. To attack this problem we first imagine mapping a
square section of the sample to a coarse grained lattice(see
Fig. 1). Here each column represents a step. A lattice site can
either be occupied or unoccupied. Occupied sites represent
sections of a step that have doubled. A step that initiates a
nucleation event forms a bulge and doubles with its down-
stairs neighbor(to the right as in Fig. 1) as observed experi-
mentally. Any given step is equally likely to double with its
upstairs or downstairs neighbor. The asymmetry is only in
the doubling process, which sets the position of the doubled
step edge to be at the edge of the downstairs step of the
doubling pair. This has no bearing on our calculations of the
final state disorder and kinetics that are to follow. Thus oc-
cupied lattice sites occur in pairs, one each on adjacent steps.
A nucleation event where a step-edge bulge touches its
downstairs neighbor is represented as shown in Fig. 1 in the
coarse-grained picture. Taking the coarse-grained view in-
volves the loss of some specific information about the sys-
tem. One looses information about the exact position of a
nucleation point and also the exact shape of the doubling
step. Positions in the vertical and horizontal direction can
only be specified up to a single step width. Thus the coarse
graining will also fail to capture the meandering of indi-
vidual steps.

Once a nucleus has been formed the two steps will even-
tually form a double stepunless it gets frustrated as de-
scribed previously(and in Fig. 1). If we examine the system
after all evolution has ceased, there are thus at least two
possible entities: a perfectly doubled step, which occupies
two columns of the coarse grained lattice, and a frustrated
pair, which occupies three columns. There are in principle
higher order defects that can occupy more columns(see Fig.
2). For example one can have an extended structure where
the doubling of steps 1 and 2 is frustrated by the doubling of
steps 2 and 3 at another point, which in turn is frustrated by
steps 3 and 4 nucleating a doubling event and so on. To be
able to proceed with an analysis we need to understand what

FIG. 1. (a) A schematic view of single and double steps. The
lines represent step edges. The thick lines denote double step edges.
The terrace on the left of an edge is higher than the one to the right.
Also shown is a single step-edge bulge touching its downstairs
neighbor thus initiating a nucleation. The two edges will subse-
quently zip together, as indicated by the arrows, to form a double
step.(b) A coarse-grained lattice representation of the situation in
(a). Shaded sites represent occupied sites, i.e., sites belonging to a
double step.(c) A frustrated dead end forms when steps 1 and 2
attempt to double and steps 2 and 3 also attempt to double starting
at another nucleation point.(d) An isolated step is formed when
steps 1 and 2 and steps 4 and 5 double leaving step 3 with no
partner to double with.
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kind of defects are important and under what conditions. We
first consider the simplest case where the zippering rate is
taken to be infinite.

B. Infinite zippering rate

In this caseI is assumed to be some finite number, while
Z is taken to be infinite. Nowany nucleation will lead to a
perfectly doubled step as the steps zipper together instanta-
neously. There will be no frustrated dead ends in this sce-
nario. However, there will be isolated steps, both of whose
neighbors have doubled with other steps. The question then
is how many of these isolated steps will be present in the
final state when all evolution is complete.

To answer this question, we first note that a nucleation
attempts the occupation of two columns in the coarse grained
lattice picture. If the columns are unoccupied before the at-
tempt, the nucleation is successful and both columns are oc-
cupied. Thus in any given time step when a succesful nucle-
ation occurs two adjacent columns are fully occupied.
Furthermore, once these columns have been occupied subse-
quent successful nucleations cannot overlap either of these
columns. We can now visualize the process as occurring on a
1D lattice, each site of which corresponds to a column on our
original lattice. A successful nucleation event leads to the
occupation of two consecutive sites on this 1D lattice. Each
nucleation attempt, therefore, corresponds to a random
choice of a pair of consecutive sites. If both these sites are
unoccupied, the attempt is successful and as a result both the
sites are occupied. This process isexactly RSA of dimers
(objects that occupy two lattice sites) onto a 1D lattice. In the
RSA process a dimer attempts to adsorb onto the lattice at
every time step, corresponding to the nucleation attempts in
our system. Dimers cannot overlap just as in our system
already doubled steps cannot double again with a different
step. Thus in the limit of an infinite zippering rate our prob-
lem mapsexactly to an RSA problem of dimers adsorbing
onto a 1D lattice.

Though the solution to the RSA problem is standard
[26,30], we present the solution for completeness and to set
the stage for the next subsection. We first definePn to be the
probability that a randomly chosen site is part of a sequence
of at least n consecutive empty sites. We can then write
down the time evolution of this probability fornù1

dPn

dt
= − ksn − 1dPn − 2kPn+1. s1d

The first term accounts for the sequence being broken by the
adsorption of a dimer within then sites, which can be done
in n−1 ways. The second term refers to a dimer overlapping
the sequence from either end if the sequence has at leastn
+1 sites. This can be done in two ways. In order to solve this
set of equations, we first define the conditional probability
gn=Pn/Pn−1. Using Eq.(1), we can write down the set of
equations satisfied by thegn’s.

dgn

dt
= − kgn − 2ksgngn+1 − gn

2d. s2d

Now at time t=0, the lattice is empty and all thePn’s are
identically unity. This implies that all thegn’s are unity att
=0. Therefore the initial conditions tell us that all thegn’s
satisfy the same equation att=0 since the second term on the
right-hand side in Eq.(2) does not contribute. However, this
means that as time progresses thegn’s evolve in an identical
fashion, all of them being equal, with the second termnever
contributing. Thusgn= fstd is simply a function of time and
does not depend onn. We can, therefore, look for solutions
to Eq. (1) of the form

Pn = fstdPn−1. s3d

Using this with Eq.(1) gives a differential equation forfstd
[which can also be obtained directly from Eq.(2)] that may
be solved to yield theansatz

Pn = e−ksn−1dtP1. s4d

It may be readily verified that theansatzconsistently satisfies
Eq. (1). Now using(1) and (4), we get

dP1

dt
= − 2ke−ktP1 s5d

which yields

ln P1 = 2e−kt + c s6d

wherec is an arbitrary constant. Using the initial condition
that att=0, the lattice is empty and henceP1=1, we get

c = − 2. s7d

We thus have an explicit solution forP1

P1 = expf2e−kt − 2g. s8d

This tells us that whent→`, P1→e−2. The fraction of sites
that are unoccupied in the final state is, therefore,e−2

<13.5%. Thus even in the case where we only have per-
fectly doubled steps, the percentage of total area covered by
the doubled steps is 86.5%. There willalwaysbe 13.5% of

FIG. 2. Examples of higher order defects: A defect structure
spanningn+2 columns is defined to be of ordern. (A) A frustrated
dead end: a defect of order one, which spans three columns.(B) A
defect of order two spanning four columns.(C) A defect of order
three spanning five columns.
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the surface covered by isolated single-step defects. In the
case of a finite system we expect 13.5% defective area on
average. We will later consider the case where the ratioI /Z
is small but finite. Here we expect not only isolated step
edges, but also frustrated dead ends and possibly defects of
higher order.

C. Accounting for frustrated dead ends

In real experimental situations[2,3,27], one observes not
only perfectly doubled steps, but also frustrated dead ends
(defects of order one). In this section we will lay down the
mathematical framework that we will use to treat the occur-
rence of defects.Supposewe are in a regime(low I /Z) where
we haveonly two significant entities: perfectly doubled steps
and frustrated dead ends. A perfectly doubled step occupies
two columns and a frustrated dead end spans three columns.
We may now think of the process as occurring on a 1D
lattice with dimers(blocks of two lattice units) representing
perfectly doubled steps and trimers(blocks of three lattice
units) representing frustrated dead ends adsorbing onto the
lattice at different rates. The dimer attempt rate is denoted by
k and the trimer attempt rate byk8. These attempt rates are in
general functions of time, the nucleation rate, and zippering
rate. The problem of determining these attempt rates will be
dealt with in the next section. For now we take them to be
arbitrary functions of time. The kinetics of this process cor-
responds to the problem of RSA of a binary mixture[28,29]
though with attempt rates that are functions of time. As be-
fore we first definePn to be the probability that a randomly
chosen site is part of a sequence ofat least nconsecutive
empty sites. We can then write down the time evolution of
this probability forn.2

dPn

dt
= − ksn − 1dPn − 2kPn+1 − k8sn − 2dPn − 2k8Pn+1

− 2k8Pn+2. s9d

The first term accounts for the sequence being broken by the
adsorption of a dimer within then sites, which can be done
in n−1 ways. The second term refers to a dimer overlapping
the sequence from either end if the sequence has at leastn
+1 sites. This can be done in two ways. The third, fourth,
and fifth terms are similar to the first and second except that
they refer to the adsorption of trimers in an analogous fash-
ion. Introducing the conditional probabilitiesgn=Pn/Pn−1
and using the initial conditions, we find thatgn= fstd is only
a function of time and does not depend onn. We, therefore,
introduce the ansatz

Pn = fstdPn−1. s10d

Using this in conjunction with Eq.(9) and the initial condi-
tion Pn=1 yields

fstd = e−e0
t kst8d+k8st8ddt8. s11d

This, along with Eqs.(9) and(10), yields an explicit solution
for P2

P2 = expF−E
0

t

kst8ddt8 −E
0

t

f2fst8dfkst8d + k8st8dg

+ 2k8st8dffstd2ggdt8G s12d

and hence from(10) for all Pn for nù2. Forn=1 we have

dP1

dt
= − 2kP2 − 3k8P3 s13d

which upon integration gives

1 − P1st = `d =E
0

`

s2kP2 + 3k8P3ddt. s14d

P1st=`d is simply the fraction of space occupied by isolated
dead ends at asymptotic coverage. The two terms on the right
are simply the fraction of space occupied by the dimers
(double steps) and trimers(frustrated dead ends), respec-
tively. It is to be noted that this constitutes an exact solution
for the problem of RSA of a binary mixture in 1D with
arbitrary time dependence of the attempt rates. It is also to
be noted that this analysis may be extended to include de-
fects of higher order if one knows the attempt rates for all the
species being considered. We now consider the case withI /Z
small but nonzero and compute the ratesk andk8 explicitly
in terms of the experimental parametersI andZ.

D. Nonzero but small I/Z

We now apply the formalism developed in the previous
section to our problem where we are given the experimental
parameters:I andZ. The case whenI /Z is small but nonzero
is important as it is closer to reality. Most experimental situ-
ations have I /Z values, which are typically of order
10−3–10−1 [21,27]. To begin our analysis we need to under-
stand for what values ofI /Z different orders of defects be-
come important. Intuitively one expects that for small
enoughI /Z, considering only defects of order one would be
a good approximation. To estimate how smallI /Z needs to
be we first consider the mean-free pathkll of a successful
nucleation on an empty lattice. By mean-free path we mean
the average length to which the doubled step grows before it
is cut off by other nucleations.

Heuristically one can say that higher order defects will
not be important when the mean-free path is much larger
than the size of the lattice we are dealing with, i.e.,kll@M.
It is important to notice that, though we use a square lattice,
the M referred to here is the relevant size in the direction
along the steps independent of what lattice size we may con-
sider perpendicular to the step-edge direction. We now focus
on a regime of lowI /Z that satisfies the above condition with
the assumption that we only have frustrated dead ends. The
explicit condition will be worked out later in this section.

We can now view the whole process as occurring on a 1D
lattice of sizeM corresponding to the problem of RSA of a
binary mixture. In our system there are only dimers trying to
adsorb onto the lattice except they may turn into a trimer if
another dimer overlaps one of its units within the time it

A. GOPINATHAN AND T. A. WITTEN PHYSICAL REVIEW E 70, 041603(2004)

041603-4



takes to zipperM steps. We thus view this as a RSA process
with the rate at which trimers try to adsorb determined by the
probability q of the above-mentioned overlap occurring. We
now compute this probability explicitly in terms ofI andZ.

We first defineq to be the probability that a nucleation
event leads to a perfectly doubled step on anemptylattice. If
I is the nucleation rate over theM 3M sample then the prob-
ability of any one element initiating a nucleation in timeDt
is I /M2Dt. Now consider a nucleation eventk lattice con-
stants away from the nearest horizontal edge of theM 3M
lattice (see Fig. 3).

Upto a timeta=2k/Z, both ends of the doubled step grow
by zipping. Fort. ta only one end grows since the other end
has already reached the edge of the lattice. This part of the
process takes a timetb=2sM −2kd /Z. For t, ta the number
of sites where a nucleation can lead to frustration is 2sM
−Ztd. For ta+ tb. t. ta the number of sites where a nucle-
ation can lead to frustration is 2sM −2k−Zst− tad /2d. Now
the probability at a timeti , ta past a nucleation that the
doubling steps do not get frustrated in the nextDt of time is
given by

Pasid = S1 −
I

M2DtD2sM−Ztid

s15d

<expF−
I

M22sM − ZtidDtG . s16d

Similarly for ta+ tb. tj . ta, we get

Pbs jd = S1 −
I

M2DtD2sM−2k−Zst j−tad/2d

s17d

<expF−
I

M22sM − 2k − Zstj − tad/2dDtG . s18d

Thus the total probability that the nucleation event,k lattice
constants from the edge, leads to a perfectly doubled step is

qk < p
i

Pasidp
j

Pbs jd s19d

<p
i

expF−
I

M22sM − ZtidDtiG
3p

j

expF−
I

M22fM − 2k − Zstj − tad/2gDtjG s20d

=expF−E
t=0

t=ta I

M22sM − Ztddt

−E
t=0

t=tb I

M22sM − 2k − Zt/2ddtG s21d

=expF−
2I

Z
GexpF−

4I

Z
SS k

M
D2

−
k

M
DG . s22d

It is equally probable for the first nucleation to occur at any
site along a column. We, therefore, have to average over all
possible values ofk that are integers from zero toM /2. This
gives

q = kqklk s23d

=expF−
2I

Z
G 2

M
o
k=0

k=M/2

expF−
4I

Z
SS k

M
D2

−
k

M
DG s24d

<expF−
2I

Z
GS2E

0

1/2

expF−
4I

Z
sx2 − xdGdxD s25d

=expF−
I

Z
GSZ

I
D 1

2 p
1
2

2
erfFS I

Z
D 1

2G . s26d

Thus we have a relation between the probability of a
nucleation leading to a perfectly doubled step and the ratio of
the nucleation and zippering rates. It is to be noted that to
preserve invariance under rescaling time,q can only depend
on the ratio of the rates and not on their absolute magnitude.
Happily, Eq.(26) respects this invariance.

We now return to the question of when the approximation
of considering only order-one defects is valid. To do this, we
compute the value of the mean-free path of a successful
nucleation, defined earlier, explicitly. We first compute the
probability that the doubled step length on one side of the
point of nucleation exceedsl0. At any timeti after the nucle-

FIG. 3. Left: Scenario after a timeti = ts,tad after the first nucle-
ation on an empty lattice. The nucleation-occurredk lattice sites
from the nearest horizontal edge. The doubled step(denoted by the
shaded region) has grown to a lengthZt. The sites where a nucle-
ation would lead to frustration(denoted by the “walled” sites) num-
ber 2sM −Ztd. Right: A situation after a timeti = t after a successful
nucleation. “Walled” sites denote the places where a nucleation
could lead to the growing doubled step being “cut off” before it
reaches a lengthl0= l on one side.
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ation event the probability that the doubling step does not get
stopped by doubling events in its path in the next time step
sDtd is given by

Psid = S1 −
I

M2DtD6sl0−Zti/2d

s27d

<expF−
I

M26sl0 − Zti/2dDtG . s28d

Here we take the probability of not stopping the zippering
end of the doubling step in the nextDt of time to be the
probability of having no nucleation in timeDt at any site
raised to the power of the number of sites where such a
nucleation would lead to stoppage(see Fig. 3). Now the total
probability is simply the product of thePi’s that can be writ-
ten as the exponential of an integral yielding

Psl . l0d = expF−
6I

Z
S l0

M
D2G . s29d

Knowing this probability distribution we can calculate the
mean lengthkll, which is what we defined as the mean-free
path. The mean-free path is thus

kll = 2E
0

` dP

dl
ldl = MS4p

6
D1/2SZ

I
D1/2

. s30d

Using the explicit formula forkll in terms ofI /Z above, the
condition for neglecting higher order defects reduces toI /Z
!4p /6,2.09. As noted before for most realistic experimen-
tal situations, this situation is easily satisfied. Simulation re-
sults presented later support our assumption.

Now, the value ofq derived above neglects the influence
of nucleations other than the ones that can frustrate the initial
zippering double step. For example, a nucleation directly be-
low and aligned with the original growing double step will
block sites where nucleations could have frustrated the origi-
nal growing double step. This is also true for nucleations on
columns on either side of the original doubling step. In gen-
eral a nucleation occurring many columns away may still
influence the probability of the original nucleation forming a
perfectly doubled step. Intuitively we would expect that the
further such a column is from the original nucleation, the less
its influence will be. Indeed for a nucleation occurringj col-
umns away the probablity that its effect will propagate to the
column where the original nucleation took place will go as
sI /Zd j. This is because, for this to happen, we needj nucle-
ations(for each intervening column), each of which will oc-
cur roughly with a probability proportional toI /Z. Thus for
small enough values ofI /Z, we may neglect the effect of
columns that are further away. However to be sure that this is
not a big effect we need to ascertain the effect of nucleations
on columns that are closest to the original doubling step. To
do this, we need to take into account the probability that a
site at which a nucleation could lead to frustration may not
be available for occupation. Thus Eq.(16) will read

Pasid = S1 −
I

M2uDtD2sM−Ztid

. s31d

The extra factoru reflects the probability that the site in
question is available for occupation.u may be roughly re-
lated in a “mean-field” sense to the average fraction of un-
occupied sites at that time. As an approximation we take this
fraction to beP1 for the case with an infinite zippering rate.
Then going through the above analysis will yield a “cor-
rected” value ofq. We find thatq goes up by a factor that is
about 6.2% whenq,0.5 and less than 0.1% whenq,0.9.
Thus we find that neglecting these effects does not alter our
results by much.

It is to be noted that when the only structures present were
perfectly doubled stepssZ=`d, the mapping to the RSA
problem was exact. Now we have two kinds of entities. The
doubled steps still cannot be overlapped and are put down
randomly. They are still amenable to RSA analysis. How-
ever, the frustrated dead ends can become defects of order
two (Fig. 2) when the sections of them that are still single
steps merge with a neighboring step if available. If this oc-
curs during the process when there are still pairs of single
steps that can form perfectly doubled steps, it will affect the
dynamics and hence the asymptotic fraction of different spe-
cies. It is this process that we neglect as a first approxima-
tion. Later simulation results show that this is a reasonable
assumption.

We now consider how the competition parameterq is al-
tered when the surrounding lattice is not empty as discussed
above. The value ofq does depend on the environment in
which the nucleation occurs. We can imagine three possible
scenarios.(i) Columns on either side of the freshly nucleated
double step are already occupied(doubled). In this caseq
=1, since this nucleation cannot be frustrated.(ii ) Columns
on both sides are empty(single). In this case we may use the
result for the empty lattice, since for low enoughI /Z, as we
argued before, the state of columns further away will not
matter much.(iii ) One side of the freshly nucleated double
step is occupied. The correct value to be used here will be
q1/2. The relative probabilities of these scenarios occurring
will evolve as a function of time. In order to account for this
we ought to use the more general treatment, whereq can be
an arbitrary function of time, presented in the previous sec-
tion. However since most of the defects form in the early
stages, we anticipate that the asymptotic fraction of defects
will not be altered significantly if we use a constant value of
q, evaluated for the empty lattice. Our simulation results con-
firm this view. The dynamics will, however, be sensitive to
changes inq, and this will be addressed in the section on
time dependence. For now we takeq to be a fixed constant
throughout the process.

We can now view the process as a RSA of a binary mix-
ture of dimers and trimers on a 1D lattice. A dimer adsorbs
onto the lattice with a probabilityq and a trimer with a
probability 1−q. If k0 is the overall attempt rate at which
nucleations are tried on the 1D lattice, then the dimers have
an attempt ratek=k0q and the trimers have an attempt rate
k8=k0s1−qd. We now use the results derived for the process
on an infinite 1D lattice with dimers attempting to adsorb at
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a ratek and trimers at a ratek8 (as in the previous section).
Using the fact that herek andk8 are constants Eq.(12) yields

P2 = expF− kt + 2e−sk+k8dt +
k8

k + k8
e−2sk+k8dt − S2 +

k8

k + k8
DG
s32d

and hence from(10) an explicit solution for allPn for n
ù2. Forn=1 we have

dP1

dt
= − 2kP2 − 3k8P3 s33d

which upon integration gives

1 − P1st = `d =E
0

`

s2kP2 + 3k8P3ddt. s34d

P1st=`d is simply the fraction of space occupied by isolated
dead ends at asymptotic coverage. The two terms on the right
are simply the fraction of space occupied by the dimers and
trimers or double steps and frustrated dead ends respectively.
Figure 4 shows a plot of the fraction of various species as a
function of q. This is the only parameter in the problem as
the asymptotic coverages are clearly independent of the over-
all ratek0. Thus we have demonstrated that both the nature
and number of defects in the final state depend only on the
dimensionless parameterq. It is to be noted that the isolated
single step population(not shown) does not change much
s8% –13.5%d with q in contrast to double steps and frus-
trated dead ends. This is in qualitative agreement with ex-
perimental results[27]. It is also to be noted that whenq
&0.58, the fraction of width occupied by the defects exceeds
that occupied by perfectly doubled steps. This characteriza-

tion can be used to infer the ratioI /Z by simply looking at
the number of defects in the final structure. One thus gains
information about the dynamics of the process from the final
state.

E. Scaling of the fraction of defects

A point of interest is the case whereZ@ I. Here the nucle-
ations are the rate-limiting step and the zippering occurs al-
most instantaneously. In this casek8→0 and we retrieve the
Z=` case where we can explicitly solve forP1 yielding
P1st=`d=e−2. Thus even in this situation 13.5% of the steps
remain as isolated step defects.

In the limit of q→1 the mapping to the RSA problem
becomes exact. We now consider the scaling of the number
of frustrated dead ends withe;1−q in this limit. The frac-
tion of frustrated dead ends(defects of order one) is given by

pfr =E
0

`

k8P3dt s35d

=E
0

`

k0s1 − qdP3dt s36d

=k0eE
0

`

expf− k0tgP2dt s37d

=k0eE
0

`

expf− k0tgexpF− kt + 2e−sk+k8dt +
k8

k + k8

3e−2sk+k8dt − S2 +
k8

k + k8
DGdt. s38d

Here k=k0s1−ed and k8=k0e. Using these in the above ex-
pression and retaining terms to lowest order ine we obtain

pfr = k0ee−2E
0

`

expf− 2k0t + 2e−k0tgdt s39d

=ee−2E
0

`

expf− 2x + 2e−xgdx s40d

=0.284 . . .e. s41d

Thus for smalle the fraction of frustrated dead ends rises
linearly with e with a slope of 0.284. Figure 5 shows a plot
of values ofpfr obtained from the simulations described in
Sec. III versuse. The error bars on the individual data points
are about 5%. The line plotted is a best fit line to the points
and yields a slope of 0.28±0.01 and an intercept of
0.0000±0.0002. This agrees very well with our prediction
and shows thatpfr indeed rises linearly withe with a slope of
0.28. The observed number of frustrated dead ends thus
gives us explicit information about the competition param-
eterq and hence the experimental rates.

F. Accounting for nucleations outside the field of view

In the above analysis we assumed thatall doubling oc-
curred as a result of nucleations that occurred within the

FIG. 4. Plots of fraction of doublets and triplets as a function of
q. The fraction of a species is the number of that species divided by
the size of the lattice(60 here). Solid and dashed curves are ob-
tained by numerical integration of 34 and refer to the fraction of
frustrated dead ends and perfectly doubled steps, respectively. The
simulation results for the fraction of frustrated dead ends(open
circles) and perfectly doubled steps(diamonds) are also shown and
are plotted withq values computed using the Eq.(26).
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region of observation. Clearly this need not be the case.
Nucleations that occur outside the region of observation can
lead to doubled steps within this region. In a typical experi-
mental situation for example one would likely examine some
subsection of the sample and take that subsection as being
representative. We thus need to account for unobserved
nucleations in order to make contact with experiment.

Most of the analysis done before still holds for this case.
Nucleations occurring outside the field of view will increase
the overall attempt rate(since there will be doubled steps
formed by nucleations occurring outside and zippering in).
They will also make it more probable for a given nucleation
to be frustrated(since nucleations occurring outside can also
frustrate doubling steps within the field of view). If we are
interested only in the asymptotic fraction of defects, we do
not need to consider changes in the overall attempt rate. The
only difference will arise in computing the probability that a
given attempt at a doubled step succeeds without being frus-
trated, i.e., our competition parameterq. We take the region
of observation to be anM 3M lattice embedded in a larger
lattice, which is 3M 33M. The choice is simply made based
on convenience and for ease of comparison with simulations.
First we recall the concept of a mean-free path for a zipper-
ing double step. We defined this to be the average length to
which a zippering double step can grow from the nucleation
point without being hindered by a nucleation in its path.
Taking into account the probability per unit time of a nucle-
ation occurring in the path and the zippering speed, it was
shown that the probability of a zippering double step grow-
ing to a lengthgreater than l0 is

psl . l0d = expF−
6I

Z
S l0

M
D2G s42d

whereI is the nucleation rate over anM 3M area. Knowing
this probability distribution, we can calculate the mean

length kll which is what we defined as the mean-free path.
The mean-free path is thus

kll = MS4p

6
D1/2SZ

I
D1/2

. s43d

Now we assume that theonly nucleations that will have an
effect on the region of observation occur either in this region
or kll above or below this region. This is because a zipper
originating from a nucleation farther away is likely to be cut
off by nucleations in its path. As before we consider the
scenario at a timet after a nucleation event inside the region
of interest,k lattice constants away from the nearest edge of
the M 3M lattice on an otherwise empty lattice. The prob-
ability that this nucleation leads to a perfectly doubled step
may be derived in a manner analogous to the way we derived
Eq. (22). There are two factors contributing to this probabil-
ity. First, there is the probability of being frustrated by nucle-
ations inside the field of view. This is exactly the same as
before. We denote this asPin, which is given by

Pin = expF−
2I

Z
GexpH−

4I

Z
FS k

M
D2

−
k

M
GJ . s44d

This follows from Eq.(22). The second factor which we now
consider is to account for nucleations occurring outside the
field of view. Now the probability at a timeti , ta past a
nucleation that the doubling steps do not get frustrated in the
next Dt of time is given by

Pout
1 sid = S1 −

I

M2kllP2kplDtD4

s45d

Hereta=2k/Z as before.kpl refers to the average probability
that a nucleation within a mean-free path distance of the
horizontal edge of the field of view, zippers to the edge with-
out being cut off. This is simply the average of the probabil-
ity given by Eq.(42) over this region,

kpl = S Z

6I
D1/2M

kll
p1/2

2
erfFS Z

6I
D−1/2kll

M
G . s46d

P2 accounts for the probability that a nucleation is indeed
possible at the site in question. We simply choose forP2 the
solution for the infinite zippering rate case[Eqs.(8) and(4)].
The factor of 4 comes from the fact that there are four col-
umns along which a nucleation from outside can zipper in to
frustrate the original nucleation(see Fig. 3). We can write
down a similar expression for timesta, ti , ta+ tb where tb
=2sM −2kd /Z.

Pout
2 sid = S1 −

I

M2kllP2kplDtD2

. s47d

The change here is in the exponent, which changes from 4 to
2, since once one end has reached the edge, there are only
two columns left along which a nucleation from outside can
zipper in to cause frustration. We now take the product
Pout

1 Pout
2 and integrate over time to get

FIG. 5. Plot of fraction of frustrated dead ends versuse;1−q
showing the linear relation. The open circles are simulation results
and the straight line is a best fit to these points. The best-fit line has
a slope of 0.28±0.01 and an intercept of 0.0000±0.0002.
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Pout = expF− 4I

M2 kllkplE
0

ta

P2dtGexpF− 2I

M2 kllkplE
0

tb

P2dtG .

s48d

We similarly consider the probability that a nucleation event
that occurs outside the region(within kll of the edge of the
region of interest) results in a perfectly doubled step,

P0 = expF−
2I

Z
GexpF− 2I

M2 kllkplE
0

2M/Z

P2dtG . s49d

This comes from puttingk=0 in the productPinPout. This has
to be weighted by the probability that the particular nucle-
ation results in a zipper that makes it to the edge. This prob-
ability as calculated before(Eq. (42)) is

ps jd = expF−
6I

Z
S j

M
D2G . s50d

Now we simply average the probability of getting a perfectly
doubled step over all positions(both inside and outside) with
the appropriate weights following the steps to get Eq.(26). It
is to be noted that if the distance from the edge of the field of
view to the edge of the outer boundary is less than the mean-
free path, thenkll in the above expressions is to be replaced
by this distance. The integrals cannot be performed to yield a
closed form answer. These, however, can be numerically
evaluated for specified values ofI /Z. The dependence of the
fraction of species onq remains the same as before. Only the
relation betweenq and I /Z has changed. Figure 6 shows a
plot of the fraction of various species as a function ofq. It is
to be noted that, for the same value ofI /Z, an open sub-
system will have a smaller value ofq and hence a larger
number of frustrated dead ends than a closed system of the
same size(see Fig. 7). This is what one would intuitively
expect.

One can use this analysis to infer the number and nature
of defects in a larger sample simply by looking at a small
patch and inferring the value ofI /Z. However, care must be
taken if the calculated value ofI /Z for the larger sample
exceeds about 0.5. One must then do an extended analysis
incorporating a finite number of higher order defects dictated
by the value ofI /Z. It is to be noted that this treatment
contains several ad hoc approximations and should only be
taken as a rough estimate and a proposed methodology.

G. Time dependence

Until now we have been looking at the asymptotic
st→`d limit of the surface morphology. In this nonequilib-
rium problem however the final morphology is dictated by
the dynamic evolution, and hence it is interesting to look at
this evolution. Experimentally too there has been recently
much progress in studying the time evolution of the step
doubling process[2–5].

We first introduce an order parameterc, which we define
to be the fraction of sites that have undergone doubling. A
completely empty matrix in which all steps are single corre-
sponds toc=0, and a completely full state in which all sites

are doubled corresponds toc=1. At the beginningst=0d we
start with a situation where all the steps are singlesc=0d.
Now consider the situation after a timet. We define the av-
erage time it takes for a perfectly doubled step to form to be
t2
* =3M /2Z. We assume it takes roughly half the time for a

frustrated dead end to form and definet3
* =3M /4Z. We make

these approximate estimates since we would just like to give
a qualitative sense of the time dependence. Now all double

FIG. 6. Plots of fraction of doublets and triplets as a function of
q. Solid and dashed curves are theoretical curves and refer to the
fraction of frustrated dead ends and perfectly doubled steps respec-
tively. These are identical to the curves in Fig. 4. The simulation
results for the fraction of frustrated dead ends(open circles) and
perfectly doubled steps(diamonds) are also shown, but withq being
computed using the relation for the case of an open subsystem. The
arrows on selected data points indicate how much they would shift
if q were calculated using the relation for the case of a closed
system. The fraction of a species is the number of that species
divided by the size of the lattice(20 here).

FIG. 7. Competition parameter versusI /Z for the closed system
(dashed line) and the open subsystem(solid line). Values ofq are
lower for the open subsystem case for the same values ofI /Z.
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steps initiated before timet− t2
* and all frustrated dead ends

initiated before timet− t3
* have formed completely. Entities

initiated within this interval have formed partly. So we have

cstd =E
0

t−t2
*

2kP2dt8 +E
0

t−t3
*

2k8P3dt8 +E
t−t2

*

t

2k8P2
t − t8

t2
* dt8

+E
t−t3

*

t

2k8P3
t − t8

t3
* dt8. s51d

The first two terms account for the completely formed
(completed double steps and frustrated dead ends) structures.
The third and fourth terms account for the structures that are
partly formed. The factor of two in all the terms comes from
the fact that each doubled step occupies two columns. The
frustrated dead ends also effectively occupy two columns(in
terms of area) though they span three columns. Since we
have explicit solutions forP2 andP3 as functions of time we
can computecstd. The only parameter we have not yet evalu-
ated is the overall attempt ratek0. We may think of each
doubled step as being caused by one nucleation and each
frustrated dead end being caused by two. Then the attempt
rate of dimers plus twice the attempt rate of triplets ought to
be equal to the nucleation rate per column.

k + 2k8 = k0q + 2k0s1 − qd s52d

=k0s2 − qd =
I

M
, s53d

which yields

k0 =
I

Ms2 − qd
. s54d

Having evaluatedk0 we can now computecstd explicitly in
terms ofI, Z, andM. Figure 8 shows a plot of the computed
cstd (dashed line) as a function of time for two different
values ofI /Z (0.05 and 0.1). Z=2 in both cases. The differ-
ence between the two curves shows that the dynamics is
quite sensitive to the parameters. Thus combining the infor-
mation about the defects in the asymptotic structure and a
measurement of the time dependence ofcstd will allow us to
uniquely determine both the nucleation and zippering rates.
The mismatch between the analytical and simulation curves
at late times was anticipated before and comes from the as-
sumption of a constantq. To fix this, we use the solution for
the case with the time-dependent competition parameterqstd.
To do this, we need to computeqstd. Now, the value ofq
depends on where a particular nucleation event takes place.
As mentioned before, if the nucleation takes place at a site
which belongs to a set of two empty sites with doubled steps
on either side, the value ofq is unity since this doubling step
cannot be frustrated. This situation would occur with a prob-
ability 1−P3. This includes the probability of picking iso-
lated single steps where nucleations are not possible, result-
ing in the attempt being rejected. As a first approximation we
assume that nucleation attempts at all other places(with
probability P3) have the value ofq computed for an empty
lattice q0. In principle we can systematically refine this ap-

proximation by considering sites adjacent to a double step,
but belonging to a large set of consecutive empty sites hav-
ing a different value ofq and so on. However, we find that
the first level of approximation is sufficient for our purposes.
Thus we take the competition parameter to have a time-
dependent value

qstd = q0 3 sP3d + 1 3 s1 − P3d. s55d

We now solve the set of equations(12), (55), and(54) self-
consistently by an iteration procedure starting with the solu-
tion for the case with a constant competition parameter,q0.
The results after a couple of iterations are plotted in Fig. 8 as
solid lines. One immediately sees that these agree with the
simulation points much better at later times. Thus our treat-
ment allows us to capture the time evolution of the surface
morphology fairly accurately.

III. SIMULATION

We now describe the simulation that produced the data in
Figs. 2–5. This simulation uses the coarse-grained represen-
tation of Fig. 1, but makes none of the assumptions leading
to the curves in Figs. 2–5. It thus serves as a test of our RSA
approximations. We use anM 3M matrix to mimic a square
section of the sample. Every column of the matrix is re-
garded as a step. We have two experimental parameters that
we may use: the nucleation rateI and the zippering rateZ. A
typical simulation cycle is as follows:(1) A randomly chosen
site of the matrix is addressed.(2) If a chosen site is unoc-
cupied and its neighbor to the right is also unoccupied, then
these two sites are allowed to combine to form a nucleus
with a probabilityp= I /M2Z. This takes care of the relative

FIG. 8. Plots ofcstd versus time, measured in units of tens of
simulation steps, for two different values ofI /Z [0.05(lower curve)
and 0.1(upper curve)]. The solid curves are obtained by numerical
evaluation of Eq.(51) for the case with a time-dependent competi-
tion parameterqstd. Dashed curves are obtained by numerical
evaluation of Eq.(51) for the case with a time-independent compe-
tition parameterq0. Simulation results obtained forI /Z=0.05(open
circles) and I /Z=0.1 (diamonds) are also shown.
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rates of nucleation and zippering. Now these two sites are
considered occupied.(3) Steps 1 and 2 are repeated making
sure sites are not addressed twice until all sites of the matrix
have been addressed.(4) All steps that have previously ini-
tated doubling are allowed to grow by one lattice unit at each
free end, if possible.(5) Steps 1–4 are repeated until no new
nucleations are possible and the surface is comprised only of
perfectly doubled steps, frustrated dead ends, and isolated
single steps.(6) The results are averaged over hundreds of
runs for different values of the ratioI /Z.

A. Final state

The size of the matrix used wasM =60 because the STM
experiment described in[27] has a field of view roughly
60-terraces wide and 60-terraces tall. In the range of param-
eter values, we looked at the number of defects that were not
simple frustrated dead ends were few(,15% of the defects
for q=0.5 and decreasing with increasingq), thus justifying
the rationale for our theoretical assumption. When these
were encountered they were decomposed into constituent
dead ends and counted as that many effective frustrated dead
ends. For example, an order-two defect was counted as one
frustrated dead end and one isolated step. Figure 4 plots the
results of the simulation for various values ofI /Z. We see
very good agreement between the simulation and values pre-
dicted by theory for smallI /Z. We also see that the theory
begins to break down for large values ofI /Z s.0.46d. It is to
be noted that the largest number of perfectly doubled steps
occurs in the limit ofZ@ I and is about 43.75%. This is
consistent with our prediction for theZ=` case.

We also consider the case where the region of interest is
part of a larger region. We utilize the sameM =60 matrix and
we now count the defects and doubled steps in the central
20320 submatrix. Figure 6 plots the results of the simula-
tion for various values ofI /Z. The agreement between the
theoretical curve and the simulation values appear to be quite
good in this case, too.

B. Time dependence

We also look at the evolution of the order parameterc
during a simulation run. The simulation is done on a 60
360 matrix as before. The fraction of sites that are occupied
(doubled) is registered after every 10 simulation time steps.
This data is recorded for hundreds of whole simulation runs.
For each block of 10 time steps we then record the averagec
over all the runs. Figure 8 shows a plot of the averaged
evolution of the order parameter as a function of simulation
time for two different values ofI /Z. We see that the simula-
tion data and the theoretical curves agree quite well. It is to
be noted that there are no adjustable parameters.

Thus overall the simulation results are in agreement with
the theory and the theory effectively captures both the dy-
namics and the details of the asymptotic surface morphology.

IV. SUMMARY

We will now summarize some of the major results of the
paper. The two main parameters in this problem are the

nucleation rateI and the zippering rateZ. In the case where
Z is infinite, the problem can be mapped exactly to the ran-
dom sequential adsorption(RSA) of dimers on a lattice. The
fraction of isolated steps in this case is given bye−2

<13.5%
In most experimental situations, the ratioI /Z is small but

nonzero. For this case we show that the problem can be
approximately mapped to a generalized RSA problem with
two kinds of entities; perfectly doubled steps(dimers) and
frustrated dead ends(trimers). The condition forI /Z being
small enough is given by

I/Z ! 4p/6 , 2.09. s56d

A more practical estimate comes from the point at which
the simulation results begin to disagree with the theory,
which yieldsI /Z&0.46. We show that the fraction of defects
(both isolated single steps and frustrated dead ends) depends
on a single dimensionless parameterq given by

q = expF−
I

Z
GSZ

I
D1/2p1/2

2
erfFS I

Z
D1/2G . s57d

Figure 4 shows how the fractions of different defects de-
pend onq. For q close to one we showed that the fraction of
defects rises linearly withe;1−q as 0.284e. In a typical
experimental situation the sample surface extends beyond the
field of view. Accounting for nucleations that occur outside
the field of view changes the wayq depends onI /Z, though
the fraction of defects still depends onq in the same way as
before (as in Fig. 4). Figure 7 shows how the competition
parameterq depends onI /Z for both the cases above. Count-
ing the number of defects in the final state will allow one to
use Fig. 4 to computeq and then use Fig. 7 to infer the actual
value of I /Z for the system. We provide a specific example
of such a calculation in the next section. We also found that
we could describe the kinetics of the doubling process, both
qualitatively and quantitatively, using our RSA approach.
Some implications of the nature of the kinetics are also dis-
cussed below.

V. DISCUSSION OF RESULTS

We now compare our results to experimental data so as to
be able draw some physical conclusions. In the experiments
by Wanget al. [27] it was noted that under certain optimal
conditions, a 100 nm by 100 nm section of the sample ex-
hibited 5–6 frustrated dead ends after structural evolution
had reached an asymptotic stage. The step-zippering rate was
measured to be 3.7 Ås−1. The case to which this data ought
to be compared is the one where the region of interest is
embedded in a larger region. From Fig. 6 we immediately
see that to get 5–6 frustrated dead ends in a 60360 matrix,
we requireq<0.7. This gives us a value for the ratioI /Z
<0.12. Knowing the experimentally measured zippering
rate, we can also deduce the true nucleation rate. In our
model we haveZ=2 measured in units of step width per
simulation time step. The step width is about 1.65 nm, which
tells us that each simulation time step corresponds to 2
31.65/0.37<9 seconds. Thus the true nucleation rate in this

DEFECT FORMATION AND KINETICS OF ATOMIC… PHYSICAL REVIEW E 70, 041603(2004)

041603-11



case would be 0.12/9=0.0133 nucleations per second over
the 100 nm by 100 nm section of the sample. Our analysis
hence helps pin down the true experimental parameters sim-
ply by looking at the defects in the asymptotic stage.

Our analysis of the dynamics also gives us more useful
insights. In particular we notice thatP3,exps−ktdP2 [from
Eq. (10)]. This tells us that the rate of defect formation drops
exponentially faster than the rate at which perfectly doubled
steps form. Often one wishes to minimize the number of
defects. The way to do that would be to have a very low
nucleation rate(for a given zippering rate). However, then
reaching the final state would take a very long time. Since
we anticipate that most of the defects will be formed in the
intial stages, we could start with a low nucleation rate and
after some time jump to a much higher rate. This would
mean reaching the final state much faster with only a small
increase in the number of defects. As an example we ran a
simulation withI /Z=0.05 on aM =60 lattice. The number of
defects was roughly one, and it took 3600 time steps to go to
completion. A run where we started with the same value of
I /Z and then switched to a value 20 times highersI /Z=1d
after 500 time steps yieldedtwo defects and took only 700
time steps to complete. In contrast if we run the simulation
for I /Z=1 from the beginning, we get approximately 12 de-
fects. Thus we gained a factor of five in time for a minor
increase in the number of defects. One can also imagine
trying different time-dependent protocols to optimize the
number of defects and the time.

Our prediction for the dynamic evolution of the order pa-
rameter(Fig. 8) is qualitatively similar to experimental data
by Niu et al. [4]. The authors use a phenomenological ap-
proach to fit their data using second-order rate kinetics.
Though the fit is good, the analysis neglects the fact that only
neighboring steps can double. Another approach by Khare,
Einstein, and Bartelt[20] analyzes the dynamics in terms of
first passage times of random walkers using a fit with three
adjustable parameters. However as the authors note, they do
not take into account the formation of defects, such as the
isolated steps and frustrated dead ends. Our analysis allows
us to inspect the dynamics with no adjustable parameters if
we first extract the relevant parameters from an inspection of
the asymptotic structure. It also takes into account the for-
mation of defects and their effect on the subsequent dynam-
ics. This cannot be ignored for a manifestly nonequilibrium
problem such as this.

There are, however, several details that we have ignored
in this analysis. Firstly, it was noticed[3] that zippering oc-
curs much more slowly when the steps are surrounded by
already doubled steps. Secondly, we have not taken into ac-
count correlations between neighboring zippers. Another av-
enue of interest would be to integrate the time distribution of
nucleation events postulated by Khare, Einstein, and Bartelt
[20] with our RSA analysis. One could also incorporate
higher-order defects by a straightforward elaboration of our
treatment. Thus it appears that our RSA approach will be
applicable to a range of such propagating surface-
reconstruction processes. Though we know of only one such
process at the moment, many others are sure to emerge as
atomic scale knowledge of adsorption on solid surfaces
improves.

VI. CONCLUSION

We have shown here how emergent features of the step-
doubling process can be quantitively understood. Our ap-
proximation of the process as a form of random sequential
absorption leads to successful predictions in regions of ex-
perimental interest. The approximation permits simple analy-
sis, yet it shows that naive analysis based on equilibrium
statistics is misleading. The inadequacy of an equilibrium
treatment is further apparent in the time dependence of our
results. Changing the growth conditions over time can have a
striking effect on the final state.

We have focused on predicting the incidence of a particu-
lar type of defect—the frustrated dead end—but the method
gives a way of understanding higher-order composite defects
as well. Experimental mastery of propagating surface self-
organization, such as step doubling, will improve over time.
Along with this improvement, we expect stochastic models,
such as the present one, to be valuable guides in achieving
desired structures.
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